The Issue of Perception.

Natural hazards affect a variety of countries, both developed and developing, but the effects of the events when they do occur are noticeably different according to development. It would appear that in scenarios where hazard levels may be similar risk is often higher in the poorer developing country. Developed countries such as Japan or the USA would typically be primarily concerned with the financial cost of an earthquake or volcanic event, whilst poorer countries such as Haiti are often left to count the cost in terms of lives.

Continue reading

Migration against Will.

In 2015 the UK received 38,878 asylum applications, with an estimated 126,000 refugees already living in the UK. The recent migrant crisis mostly caused by violence in Syria has brought the issue of immigration to the forefront of political discussion, with the rise of UKIP suggesting many citizens of the UK fear too much immigration putting strain on services and potentially pressure on jobs in a country where unemployment is currently 1.67 million. There is no doubt that immigration provides both positives and negatives and these will vary between countries with different needs and different current rates of immigration. Whilst economic factors have traditionally been more important the cultural aspect of immigration is now also a significant issue, with events such as the New Year’s Eve sexual assaults in Cologne prompting debate over whether cultural values of many refugees fit in with the western world’s.

Continue reading

Geography for Economists.

Economic growth is affected by a number of factors given the wildly different levels of wealth between countries – the 80:20 principle states that 20% of the world’s population controls 80% of the world’s wealth is a powerful example of this. Whilst there is plenty that can be done to stimulate the development of a country, such as China’s booming manufacturing base, it is worth exploring the idea that some countries may have a cap put on their development by factors they cannot control. This may be the problem of being located on a major fault line, in an area prone to drought and desertification, or even being landlocked and therefore being limited on trade. Whilst there are a number of ways for measuring development, for the purposes of this piece of writing, it will be measured in GDP per capita.

Continue reading

2015/16 Floods: What does this mean for the future of the UK?

On the 12th November 2015 the UK was hit by the first of a series of storms. Storm Abigail hit with maximum wind gusts of 84mph and brought with it heavy rain. The immediate result was power cuts to nearly 20,000 homes in Scotland. In the following three months the UK was hit with a further eight storms. The costs of these consecutive storm events project an uncertain future for the UK.

Recently released data from the Met Office makes December 2015 the wettest calendar month on record (in a series from 1910). In December the storms that hit were Desmond, Eva and Frank. Record breaking rainfall of 341.4mm of rain in 24 hours (Honister Pass, Cumbria) was brought by Storm Desmond. The resulting floods flooded 5200 homes across Lancashire and Cumbria. 43,000 homes across north-east England were without power and on 5th December 61,000 homes in Lancaster lost power when an electrical substation was flooded. Since then there has been more homes flooded, with estimates reaching 16,000. The flooding of farmland and homes has cost the government, and thus the taxpayer, massive amounts of money.

Continue reading

The Paris Agreement, a landmark success or another lenient failure?

The 21st Conference of Parties (COP) was held at Le Bourget, Paris between the 30th November and 12th December 2015. It was convened with the aim of producing a new, legally-binding agreement that commits every country, from all stages of development, to reducing emissions in order to mitigate against the impending climatic catastrophe. At the 2009 COP 15 in Copenhagen, generally regarded as a failure, governments also convened with the aim to create a similarly legally-binding deal. However, it culminated with the USA and BASIC countries drafting a non-legally binding agreement, the Copenhagen Accord. This agreement incorporated countries responsible for 80% of the world’s pollution [1] and its failure to be legally-binding and applicable to all countries greatly increased the importance of the climate talks in Paris (COP 21). The four previous COPs and in particular the ‘Lima Call for climate action”, devised at COP 20 (Lima 2014) [2], laid the foundations for the Paris talks. There was a renewed sense of optimism that the talks would prove successful. At 18:26 on 12th December 2015 (the day after the Conference’s original finish date) this optimism was rewarded when Laurent Fabius, the French Foreign Minister brought his gavel down on COP 21, announcing that the Paris Agreement, a new climate deal, had been adopted.

Continue reading

Tectonic Hazards and the Importance of the Economy

Both developing and developed countries experience and suffer from tectonic hazards however, their ability to mitigate and cope with these events differs greatly.

Venn DiagramTectonic hazards frequently occur the world over but this does not always result in a risk. There are three aspects that eventually cause the disaster and these are: the tectonic event itself, exposure to that event and whether you are vulnerable to its effects or not. Only when all three of these criteria are satisfied does a tectonic disaster occur. The first of the three cannot be mitigated against by humans as we cannot stop a volcanic eruption or an earthquake occurring. The second factor, exposure is becoming an increasingly more worrying issue as global population continues it’s current, rapid rise. As populations increase, settlements start to expand into regions of regular tectonic activity. This close proximity to the tectonic event increases exposure and hence, the risk of a tectonic disaster occurring. Mexico City is a prime example of where rapid population growth has occurred despite the overlying threat of disaster. The city, with a population of over 21 million, has experienced rapid expansion during the second half of the 20th Century despite being built on top of unconsolidated alluvial sediments. These help magnify the effect of seismic waves in the extremely seismically active region which only serves to worsen the impact of potential earthquakes. Over 5,000 people were killed in September 1985 when a category 8 magnitude earthquake hit the region but this did not seem to deter potential immigrants. The third factor that contributes to earthquake risk is the vulnerability to an earthquake and this is the area that can be most easily mitigated against although, an authority’s ability to do so is massively dependent on their economic position.

Mitigation against a tectonic disaster has three components: plan, prepare and respond. In order for a government to be able to do these, they must have first have the correct perception of the event, they must be able to perceive the danger and understand the need for mitigation. They must also have sufficient wealth available to them in order for them to successfully mitigate which is why there are such large disparities between mitigation levels in developed and developing countries.

Continue reading

Impacts of the Rapid Increase In Smoking Prevalence In Africa

There has been a huge influx in the number of smokers in African (and other developing) countries over recent years, primarily driven by transnational corporations (TNCs), which has led to a whole plethora of problems.

The surge of tobacco products into developing countries began after World War II when the USA developed its “Food for Peace” scheme where tobacco was one of the export items. In the first 25 years of the initiative, the United States exported in excess of $1 billion worth of tobacco. This was the cause of the developing world’s initial exposure to Western-style cigarettes. The evolution of tobacco markets in these regions by TNCs, was continued from the 1960s onwards through the use of a wide variety of targeted and effective marketing schemes to help widen their customer base and potentially induce smoking habits. Smoking prevalence was increased further through the actions of national tobacco companies. In an attempt to counter the increased volume of tobacco being sold by TNCs in their countries, the national tobacco corporations also developed marketing schemes in an attempt to regain lost sales. As TNCs and national corporations went head to head, the overall expenditure on tobacco marketing increased with a corresponding rise in tobacco consumption. [1]

Continue reading

The Million Death Quake – Roger Musson

Earthquakes don’t kill people, buildings do. In his book, The Million Death Quake, Roger Musson effortlessly distils centuries of research into a key message to for the citizens of the world. With an accessible writing style, this is a book to be read by all, both for its vital lessons in managing seismic hazard and for the interesting and enlightening style in which the work of a host of scientists is described.

Beginning with an analysis of the problems facing the world’s population and those trying to mitigate the impacts of earthquakes, Musson draws attention to the key factors in the level of damage caused by seismic events. The book is full of examples, and one that is particularly enlightening is the contrast between the 316,000 death toll of the 2010 Haiti Earthquake, which had a magnitude of 7.0Mw, and the 8.8Mw earthquake that occurred in Chile just a few weeks later. The reasons for this disparity in impact are multiple. Chile is more economically developed than Haiti and hence buildings there were able to be constructed to a higher standard with consideration of seismic hazard, Haiti is one of the poorest countries in the world and the 97,294 houses which collapsed due to the earthquake were built simply with the intention of minimising cost rather than maximising safety.

Musson then provides a succinct explanation of the principal factors that differentiate earthquake impact, focussing on four key terms: risk, the chance that loss will occur; hazard, the chance and likely strength of shaking in an area; exposure, the level of population and property that could be affected by shaking; vulnerability, how susceptible that population and its buildings are to damage from shaking, given education levels and the quality of building codes.

Having looked at how earthquakes occur and the reasons for their level of impact in different cases, Musson addresses the key issue of the book: how to prevent the “million death quake” that is expected within our lifetimes. I found the section on prediction particularly fascinating, both in the difficulty in determining between a small earthquake and the foreshock for a larger earthquake to come, but most of all in the unforeseen impacts of seismologists trying to predict earthquakes in certain cases. In particular, I was struck by the example of Brian Brady, a theoretical theorist who applied his theory of rock bursts to earthquakes and determined that there would be an earthquake on June 28, 1981 of over 9Mw off the coast of Peru on the basis of the 1974, 8.1Mw Lima Earthquake. He estimated a death toll of hundreds of thousands and complete destruction of Lima, the capital city of Peru. Understandably, this caused widespread alarm in Peru and despite the attempts of a panel of American seismologists to discredit Brady’s methodology, the prediction had a major impact on the economy of Peru – tourism slumped; workers quit their jobs to be with their families; and property prices plummeted. No major earthquake occurred in the summer of 1981 in Peru and soon after Brady withdrew his predictions, but real and significant damage had already been done to the Peruvian economy.

Overall, the book is very optimistic in tone – Musson strongly believes that through education programs and scientific development a seismic catastrophe can be avoided. His work is an enjoyable read, providing a strong grounding in the principles governing earthquakes whilst remaining accessible for readers of any level of geological knowledge, and is therefore definitely worth reading.

Written by Ben Williamson

Does Plate Tectonic Theory Help our Understanding of the Distribution of Seismic and Volcanic Events?

Contributed by Joe Timmins

Plate tectonic theory is a scientific theory that describes the large scale motion of the Earths lithosphere. The theory of plate tectonics was initially developed by Wegener in 1912.  His report put forward the idea of continental drift whereby he proposed the continents were once connected in one supercontinent, Pangea. This was suggested after he noticed the continents have a jig-saw fit, evidenced by South America and Africa. Plates have moved apart since Pangea, and this continental drift is what leads to seismic and volcanic activity. The lithosphere is made up of 8 main plates, and numerous small ones, which float on the earth’s asthenosphere, a highly viscous region at the top of the earth’s mantle. As these plates move, they interact with each other leading to seismic and volcanic events. Thus, a developed understanding of plate margins and their interactions can help us to understand the distribution of such events. This is particularly true as the majority of seismic and volcanic events occur at plate margins.

Evidence supporting Wegener’s theory includes fossilised remains of the mesosaurus being discovered on the coasts of Brazil and Gabon (West Africa) and also the same fossilised pollen species and rock sediments on these coast lines. Wegener’s theory was initially criticised as Wegener could not explain how the supercontinent he proposed split into different ‘jig-saw’ pieces. However, plate tectonics theory was built upon, furthering our understanding of tectonic events. Sea floor spreading was discovered, the formation of fresh areas of oceanic crust which occurs through the upwelling of magma at mid-ocean ridges and its subsequent outward movement on either side. Sea floor spreading provides evidence for the existence of plates and plate boundaries since new rock was being created and destroyed. An example of sea floor spreading was shown in the Atlantic. Here, as the Eurasian and North American plates are moving apart, magma rises through a rift and cools on the surface creating new plate material and the mid-Atlantic  ridge, a ridge of volcanoes. This is a constructive plate boundary, a linear feature that exists between two tectonic plates that are moving away from each other. Recent great advancements in technology means we can also use advanced methods to develop our understanding of tectonics. Carbon dating means we can assess the age of oceanic crust, which increases as you get further away from the mid-Atlantic Ridge and evidence from paleomagnetism equally proves sea floor spreading. Palaeomagnetism occurs as metallic rich rocks align in the crust towards the poles before they harden, after hundreds of thousands of years these poles flip and new bands of rock align in the opposite direction. Therefore, each band of the opposing aligned elements in the crust represent several hundred thousand years of crust that was created in that time. Sea floor spreading and the creation of new oceanic crust means that a plate must be being destroyed somewhere else, which brings me onto subduction zones and the consequent distribution of seismic and volcanic events.

Subduction is the process that takes place at convergent boundaries by which one tectonic plate moves under another tectonic plate and sinks into the mantle as the plates converge. Subduction zones involve the oceanic lithosphere of one plate sliding beneath the continental lithosphere or oceanic lithosphere of another plate due to the higher density of the oceanic lithosphere. Deep sea exploration has proven areas such as the Pacific Ring of Fire is at a destructive margin.   The Pacific Ring of Fire has a high concentration of earthquakes and volcanoes due to deep ocean trenches (e.g Marianas Trench) running close by parallel to these boundaries that show evidence of plates subducted beneath them (destroyed). Here a denser oceanic plate would subduct a continental plate- the plate would melt inside the mantle creating a pool of magma which would rise through the cracks in the rock forming a volcano. This development in plate tectonic theory helps explain firstly why volcanoes are always found along plate boundaries which are constructive (due to rising magma) and now also at destructive plate boundaries – due to plate melting.

Thus, plate tectonic theory explains why seismic and tectonic events occur at plate boundaries, what before any understanding, were perceived to be imaginary lines. However, there are some issues with this statement. Firstly, mountain building accompanied by seismic events can occur at plate boundaries instead of volcanic events; an example of this is along the Eurasian/Indo-Australian plate boundary. Here there are no volcanoes, but instead there are high mountain ranges such as the Himalayas. Two continental plates of the same density meet, leading to fold mountains being created whereby the two plates converge upwards as neither plate is denser than the opposing one. Pressure builds and eventually the plates fault upwards (Fracturing), adding to the creation of the mountains Explaining another way plates can be destroyed. Sudden faulting explains the seismic activity along this boundary, such as in Bam, Iran in 2003.

Another issue with the proposed distribution of seismic and volcanic activities is that intra-plate volcanoes do not correspond with the theory that volcanoes are found along plate boundaries. This is the case for the volcanoes of Hawaii and Yellowstone for instance. This does not weaken my proposed distribution however, as Tuzo Wilson came up for an explanation of this with his Hawaiian hot spot theory. He suggested hot spots were formed by magma plumes in the mantle which created melting of the crust at a particular point forming a volcano. The plume was stationary and the crust moved over it, creating a series of volcanoes called the Emperor sea mountain chain. As the crust moves, the plume would no longer build a volcano there and instead a relic feature would be left on the crust. Some of these old volcanoes have transformed into coral reeds after being eroded by the wind and sea until submerged in the sea. From this, we can conclude that intra-plate hot spots actually strengthen the theory of plate tectonics and plate movement.

A final issue with the distribution of seismic and volcanic events is that there is evidence of volcanoes away from plate boundaries. This is evident in the UK, such as at Arthur’s Seat in Edinburgh (extinct volcano) and the Whin Sill Dyke in England. However, similarly to Hawaiian hotspots, these also proved plate tectonic theory as well. They indicate temporal change of the position of plate boundaries that have moved away due to plate movement. Evidence from sea floor spreading, hot spots, subduction and convection currents in the earth’s movement driving movement have proven this case.

Plate tectonic theory has proved that there is a general correlation of the location of seismic and volcanic locations and their proximity to a plate boundary.  However this information is rather dubious as plate tectonic theory cannot tell us where along a plate boundary an earthquake will occur which are thousands of kilometers long. Moreover, while plate tectonic theory can help us understand the distribution of seismic events; this information can also be of little use as the effects of an earthquake can be felt far away. For example, after the 2011 Virginia Earthquake, the effects were felt as far North as Quebec, despite it being unusual for Quebec to feel any seismic activity due to it being away from any plate boundaries. The usefulness of plate tectonic theory is also limited due to some people’s perception of the causes of earthquakes and volcanic events.  Poorly educated people in LEDC’s may still believe tectonic events are from Gods, and so plate tectonic theory would be incomprehensible to these people who may not even be aware of plate tectonics.

To conclude, plate tectonic theory that has developed relatively recently in tectonic terms, has improved our understanding of the distribution of tectonic and seismic events. Through the understanding of how tectonic plates move, scientists have been able to assess the regular distribution of earthquakes and volcanoes found along these pate boundaries.


Stop eating salmon!

Remotely-located in the Scottish highlands, Scottish fish farms are seen as integral to isolated rural communities yet are the subject of ever-increasing controversy. Though the potential health benefits of the high Omega 3 content of oily fish such as salmon are well-publicised, the darker side of the trade is being increasingly exposed. Socially, economically and environmentally destructive, it is time for us all to stop eating salmon.

First of all, it is important to address the impacts of salmon on our health, central to the argument over its consumption. Omega 3 is almost universally accepted to be beneficial for our health, and is associated with a reduced risk of heart disease and possibly stroke. However, recent research has highlighted another component of farmed salmon which can be dangerous for our health: PCB’s (polychlorinated biphenyls). In Richard Girling’s book, Sea Change, he states that ‘The levels of PCB’s in the salmon were so high that, according to some analysts, two portions a month was all it would take for a child or pregnant woman to exceed the World Health Organisation’s recommended safety limits for dioxins and dioxin-like PCB’s.’ Although, results are not conclusive PCB’s have been linked to both severe liver damage and non-Hodgkin’s Lymphoma Disease, making eating the two portions of fatty fish a week, including farmed salmon, recommended by the Food Standards Agency a serious health risk.

Economically, the farmed fish industry has done as much harm as good. Though the farms are often located in very inaccessible areas of Northern and Western Scotland and hence provide crucial jobs to isolated communities, these benefits are becoming increasingly undermined by damage in other ways. Aside from the wages from these jobs, very little of the money generated from the industry is retained within the local economy. The vast majority of farms are now owned by the Norwegian mega-company Pan Fish who rake off any profits and all feed is sourced from abroad. Moreover, Ian MacKinnon, a Scottish journalist specialising in the subject, has highlighted that ‘The low cost high-volume approach [to salmon farming in Scotland] is socially unsustainable as it has already cost hundreds of jobs in remote rural communities in the last five years’ and that the takeover of Pan Fish has worsened this situation. The farmed salmon industry is also directly hurting other key industries of these remote areas. Interbreeding between escaped farmed salmon and wild salmon in Scotland’s rivers is severely hurting the freshwater angling industry in Scotland, which could be worth as much as £150m annually. And, the large-scale pollution from salmon farms into the pristine environment of the Highlands and Outer Hebrides – the amount of effluent from salmon farms is now equivalent to double the sewage output of the entire 5.1m human population of Scotland – is of great cost to tourism revenue in the area, another major part of the local economy.

Environmentally, salmon farming has been a catastrophe. The huge levels of pollution outlined above are tarnishing the pristine landscape and the numbers of escaped salmon from farms now means that farmed salmon outnumber wild salmon ten to one in Highland rivers. Additionally, the farmed salmon are fed fish meal – made of grounded down fish from less sought-after species – and Girling points out in Sea Change that ‘to grow one kilo of farmed salmon, you need to catch four kilos of wild fish’. This is not only a severe waste of resources, many of the fish species used in fish meal are severely endangered. For instance, WWF-Norway issued a report stating that ‘In Europe, the situation for the blue whiting, a species primarily used as ‘industry’ fish, is depressing. A total collapse is expected if the current fishing practice continues’.

The overwhelming weight of evidence now shows that farmed salmon is socially, economically and environmentally unsustainable. Therefore, given it is illegal to catch wild salmon for commercial purposes, isn’t it time that we all stopped eating salmon?

Contributed by Ben Williamsonsalmon


The growing global health crisis

In 1969, when addressing the American Congress, Surgeon General William Stewart is believed to have said that “it is time to close the book on infectious diseases, and declare the war against pestilence won”. This came at a time of great euphoria around the recent strides made in the field of antibiotics and encapsulates a contemporary feeling that science was winning the battle against disease. And yet, the 21st century has seen diseases like smallpox and polio, almost eradicated in the 1970’s, become increasingly common, and future of global health looks yet bleaker.

“Antimicrobial resistance in a ticking time bomb…for the UK”, says Sally Davies, Chief Medical Officer for the UK. As she states, a major part of the growing health crisis is the problem of increasing bacterial resistance to current antibiotic treatment. This can be attributed to the natural evolutionary process, but also the misuse of drugs by the common person. People are consistently being given a course of medication and stopping the course prematurely, once their symptoms have died down. Already we, as a society, are experiencing some of the effects of this resistance. Dr Ibrahim Hassan, a consultant microbiologist from Manchester, reported to the BBC that “we’re beginning to see that in some hospitals, patients coming in with this infection with no antibiotic that can be used to treat them”. A further factor in the problem of drug resistance is the effect of the increasing privatization of drug production. This has greatly incentivised the production and development of drugs that can act as palliatives to chronic diseases, where the drug will be used for decades, whilst deterring research into new antibiotics which have a short-term use. The fact that no new class of antibiotics has been developed since the 1980’s is a clear indication of the dire current state of antibiotic production, and consequently the dire state of the future of antibiotic treatment.

“The effect of projected climate change indicates that a prolonged transmission season is as important as geographical expansion in correct assessment of the effect of changes in transmission patterns” of infectious disease. As highlighted here by a recent article from The Lancet, global warming is another significant factor in the growing prevalence and effects of disease on the world’s population. For instance, a recent BBC report from Nairobi found that this city, previously protected by its altitude, is now suffering from malaria for the first time. In addition, diseases like malaria are anticipated to spread to higher latitudes, with southern European countries potentially at risk by the end of this century.

A final complicating factor in the fight against disease this century is the fast rates of urbanisation taking place globally. This has had a particular effect on the transmission of infectious diseases as more concentrated human settlement has allowed for easier transmission of disease. Rural to urban migration is a trend only set to continue during this century, making this an ever-growing problem. Moreover, the prevalence of slums with poor sanitation and living conditions in the major cities of LIC’s (Low Income Countries) provides perfect breeding conditions for many vectors, such as mosquitoes, increasing the risk of vector-borne diseases like malaria.

Therefore, it is clear that, along with climate change, terrorism and population growth, global health is one of the biggest issues we must tackle in the 21st century. Unless we act upon the failings of the current global health movement, it is possible that, as Dame Sally Davies reports, “if you get an infection in your bloodstream, in about 10, 20 years it might be untreatable”.

Contributed by Ben Williamson

Recent flooding is just a taste of what is to come for the UK

“Let’s hope this isn’t the sign of things to come,”1. In the aftermath of the severe flooding which has hit both the UK’s coastlines and rivers in the past few weeks, Margaret Young, a resident at Chesil Beach in Dorset, hinted at the extent of Britain’s coming flooding problem.

Currently, flooding poses a very serious annual threat to the UK. Over 110 flood alerts were issued last week 2, whilst the Environment Agency has reported that flooding cost the UK “between about £260 and £620 million”3 in the period of April 2012 and April 2013. Global warming is widely predicted to greatly increase the risk and severity of flooding in the UK, making this one of the most important economic and social issues for the UK in the 21st Century. The European Environment Agency predicts that climate change will “increase the occurrence and frequency of flood events…in particular flash floods”, whilst the Government’s own report expects “2 or 4 times” as much river flooding as now by 20803.

Reports like these, as well as the devastation caused by recent flooding, has led to widespread questioning of the government’s plans to cut another £300 million from DEFRA’s budget – the body responsible for flood defence – at a time when it should be increasing it. This is not a new issue either, as the 2004 Foresight Future Flooding report stated a need for yearly increases of £10 – £30 million above inflation to the flood defence budget, until the 2080’s. Although the Environment Secretary, Owen Paterson, has defended his government’s cuts as necessary for overall deficit reduction, the flood defence budget should surely be ring fenced given that “every £1 currently invested…reduces the long-term cost of flooding… by around £8”3.

However, it is not just increased spending that is needed on flood management, but more effective spending. A recent Guardian article revealed the complete mismatch of flood prevention and farming policy in river drainage basins where vast sums of money are being spent on subsidies for upland farmers to create additional farmland by removing vegetation, increasing flood risk4. Bare land has no or little vegetation to intercept rainfall, significantly increasing the risk of flooding downstream. A recent study of small-scale reforestation at Pontbren, near the source of the River Severn, showed that if 5% more land in the river’s catchment was reforested, there would be a 29% reduction in flooding peaks5 downstream.

Flood defence is, of course, only a small part of the work of Owen Paterson and DEFRA (Department for the Environment, Food and Rural Affairs) but it is also just one example of their continued incompetence in managing environmental affairs. The ongoing badger culls vociferously pursued by the Government in Western England present another obvious example. 2,081 badgers are scheduled to be killed in the pilot scheme alone, yet DEFRA’s own figures predict a measly 16% reduction in TB cases in cattle as a result of the badger cull. However, a recent analysis of the Randomised Badger Culling Trial which ran from 1998 to 2005 has shown even this figure to be an overestimate, since in the areas studied only 6% of cows received TB directly from badgers6.

All this goes to show that a government policy of cutting and misspending the flood defence budget is no effective policy at all in mitigating against the increased flooding that will be brought about by global warming. Though this damage may not affect the PM or his colleagues living in the Home Counties, it will bring devastation to 900,000 other homes in the UK by 20503.

While Margaret Young and thousands of others continue the cleanup operation after the recent flooding, the threat of severe flooding to their and others’ properties will be getting ever worse, thanks in large part to the incompetence of our coalition government.

Contributed by Ben Williamson

1. The Guardian,

2. Met Office, flood alert chart for 08/01/14.

3. Environment Agency,

4. The Guardian,

5. Howard Wheater et al 2008,

6. PLOS,

‘Six Degrees’ by Mark Lynas – A review

In its 2001 Third Assessment Report, the Intergovernmental Panel on Climate Change (IPCC), predicted an average global temperature rise of between 1.4o and 5.8o by the end of the century. In ‘Six Degrees’, Mark Lynas draws together half a century of scientific research to present a comprehensive, degree-by-degree study of the effects of global warming on the planet. The IPCC’s prediction becomes far more worrying when it is considered they state 2o degrees as the limit of manageable global warming. As Lynas himself points out, ‘climate change is the canvas on which the history of the twenty-first century will be painted’.

We begin with 1o – a level no longer deemed achievable by the IPCC, therefore making this chapter’s events all inevitable: a scary proposition. The “dustbowl” of the American mid-west in the 1930’s will return to even greater effect, creating a Nebraskan desert as the fertile top soil of this area is stripped away exposing the sand beneath. Though the state’s people may not be missed, Nebraska is the highest producer of red meat in the USA, selling over 3 billion kilos annually. Meanwhile, across the pond in Europe, the Alpine skiing industry will collapse quite literally as melting snow triggers huge avalanches every year. The Great Barrier Reef is also likely to become extinct, with 70% of all corals already dead or dying. Lynas pulls no punches, stating in his final chapter that ‘the Alpine glaciers, the Nebraskan grazing lands and the resplendent coral reefs are already condemned by events which lie in the past.’

2o signals irrevocable damage to Earth’s biodiversity. A 2004 study published in Nature predicted that ‘over a third of all species would be ‘committed to extinction’ by the time global temperatures reached two degrees’. Like much of the effects of climate change, this is not due to the level of warming, but its unprecedented speed, a key argument lost on those, like the Environment Secretary Owen Paterson, who play down the dangers of global warming. Such speed prevents evolution saving many species as they are unable to adjust their range fast enough towards the poles (‘In Holland, populations of pied flycatchers have declined by 90 per cent… because their chicks hatching is currently mistimed with the advancing spring’). This is compounded by human’s already catastrophic impact on the natural world – ‘species are already becoming extinct at a rate of 100-1,000 times greater than the normal background rate’ – trapping many species in ever decreasing pockets of habitat.

The book’s remaining chapters continue in a similarly chilling fashion, revealing how humanity will become ever more confined to the poles, as nature is systematically annihilated. These chapters also reveal the worst of our fate: an unstoppable positive feedback cycle taking global warming out of our control. The release of methane hydrates, a gas 20 times more effective than carbon dioxide at trapping heat; the end of the albedo effect as all Arctic sea ice is melted; wildfires in the Amazon releasing carbon dioxide trapped in plants – these will all create an unimaginable ‘vicious cycle’ of warming, irreversibly changing the planet. 5o and 6o begin to call into question the survival of the human species itself, as we herd ourselves into ever smaller fragments of the planet. The assault on the ozone layer would leave the sun’s rays strong enough to trigger ‘outbreaks of cancer amongst anyone who survived’ whilst the new coastal areas created by massive sea level rise would become virtually uninhabitable given the upwelling of toxic hydrogen sulphide from the ocean’s depth. However, though Lynas concludes that human extinction would be ‘unlikely’ given humans’ ‘unique combination of intelligence and a strong survival instinct’, billions of people would inevitably die as we run out of habitable space.

The books ends with a chapter entitled ‘Choosing our future’: Lynas’ plea to us all to act now to stop an almost incomprehensible murder of human and natural population alike. Sadly, Lynas’ assertion that we cannot let atmospheric levels pass 400ppm is now outdated as in April this year readings of 400ppm were recorded at Mauna Loa, Hawaii for the first time in the history of the planet. This only serves to strengthen Lynas’ message that our ‘path lies not in passively accepting our destructive role, but in actively resisting such a horrendous fate. ‘Six Degrees’ is a landmark achievement, assimilating the work of thousands of scientists, and equipping our generation for potentially the hardest fight in the short history of humanity: stopping climate change.

Contributed by Ben Williamson

Energy issues: Should Britain adopt fracking?

Hydraulic fracturing or ‘fracking’ has been implemented in the United Kingdom for some time, yet until recently there seems to have been a prevailing unfamiliarity with this form of natural gas extraction. The recent proposals for fracking in Balcombe in Sussex by the company Cuadrilla certainly served to arouse greater consideration in fracking operations. One of the reasons why the British government has changed it’s stance on fracking, and why we have seen the promulgation of proposals in Balcombe, are accountable to the rising demands for energy in this country which are exceeding available supplies and putting increasing levels of pressure on British energy companies, our existing infrastructure, and our own government, who continue to endeavour to secure purchase of fuel stocks abroad. At the same time Britain intends to fulfil obligations to invest and make use of renewable energy sources so as to cut our carbon emissions. As a result, Britain confronts a particularly difficult set of problems. How long can Britain delay this issue and what sort of compromise can be met if Britain adopts fracking? Is fracking compatible in the British Isles? Why is there opposition towards it?

There is an argument to suggest that fracking can be successfully managed when one appreciates the effective strategy implemented in Beckingham in Nottinghamshire. For 50 years 13 square miles of the Gainsborough-Beckingham oil field has been exploited for its natural gas deposits trapped in shale strata 3000 ft. below it. In total 53 fracking operations have been carried out since its establishment, but none of them have yet to cause major subsidence, nor has wildlife been adversely affected. Part of this success is as a result of the decision to maintain the RSPB Beckingham Marshes in the area surrounding the site, which has managed to offset the noise pollution generated from it because of the successful bird population whose birdsong muffles the sound of the operations. The survival and the growth in bird populations in the marshes and indeed other species is testamount to the effective maintenance and removal of chemicals and excess water used in the process to prevent significant run-off, which would otherwise be an inherent hazard and the primary cause of environmental damage. At the same time, operations have entailed both short term and long term economic benefits: 35 people locally are in permanent employment supporting 35 families, and the operations fuel local power stations without the tax burden on importing fuel, yielding enough electricity to support 21,000 homes. On the other hand, fracking activity has entailed unintended consequences on a number of occasions. In Britain it has exposed somewhat the natural geological hazards of the process when a mechanism disturbs local geology. Shale gas testing in Blackpool was claimed to be the main cause of two seismic events in 2011: one tremor of magnitude 2.3 hit the Flyde coast in April and a separate seismic event of 1.4 on the Richter scale occurred a month later on the 27th May, which was later confirmed by the British Geological Survey. Nonetheless, recognising that the Richter scale does not translate the damage induced by an earthquake, it was confirmed that this event enveloped no human or economic damage. It would however be foolish to suggest that because the recorded Blackpool tremors had no known human impacts, that this would be the same case elsewhere in Britain with different circumstances, different geology and different levels of vulnerability.

There are a number of environmental problems linked to fracking other than subsidence. Hydraulic fracturing requires significant input in order for it to function as an extraction process. Indeed, each fracking job requires approximately 1.2-3.5 million m3 of water and similar volumes of water each time a well is reopened. Fracking would no doubt necessitate the usage of local sources of water, and therefore would deplete water levels in local waterways and aquifers, which in turn would damage river ecosystems. The fact that at least 650 different carcinogenic chemicals are used in fracking mixtures further advises the potentially negative impacts of fracking, because these chemicals can leach into local water ways and contaminate them. Nonetheless, natural gas has the potential to satisfy a large fraction of Britain’s energy requirements and natural gas upon combustion produces half as much carbon dioxide to burning coal. The 2 hundred trillion cubic ft. on licensed to the fracking company Cuadrilla in Lancashire (Britain uses 3 hundred trillion cubic ft. per year) could potentially provide 25% of Britain’s annual energy needs for the next 30 years according to its CEO Francis Egan.

There is argument to suggest that fracking, whilst posing negative implications for the environment by burning non-renewable natural gas, could nonetheless be used as a means to sustain Britain’s energy requirements whilst it continues to invest into the renewable energy industry. Currently the natural gas provides more electricity for Britain than all renewable energy sources put together, such is the youth of our own renewable energy industry. In 2012, renewable energy sources supplied 11.3% of Britain’s electricity, whilst 41% of the electricity used was generated through the combustion of natural gas. If some of the money gained from selling natural gas was subsidised into projects developing renewable sources of energy, Britain could mitigate the affects of carbon dioxide emissions by minimizing carbon dioxide output whilst sustaining functions in Britain. In addition, making use of natural gas in the United Kingdom would eliminate the need to import natural gas which uses oil in transportation, which is currently adding to carbon dioxide emissions globally.

Although fracking encompasses positive economic and some environmental benefits, it poses realistic negative shortcomings for countryside and rural communities. A clear example of this is Welsh community in the Vale of Glamorgan, where fracking was approved in October this year. The community of Llantrithyd in the Vale of Glamorgan, some of whom rely upon low scale tourism as a source of income, would lose out to the development of fracking operations in the areas because it would permanently alter the natural landscape and views it provides which attracts seasonal visitors. Secondly, Llantrithyd possesses an historic deer park dating back to 1645 whose deer population could be adversely affected by any contamination of local waterways. In addition to this, one of the long term setbacks for local people would be the growth in congestion on local roads following the activity of fracking company lorries transporting raw materials, gas and chemical volumes to and from sites. On the other hand, when one looks at the example of the Gainsborough-Beckingham fracking site, the limitations of fracking as mentioned above are not characterized by this site. One of the main conclusions we can extract from this is that fracking would entail different repercussions for different locations based upon the contrasting characteristics of varying towns and villages. Therefore, there is argument to suggest that if fracking can be successfully integrated into the local scene and way of life, the benefits of fracking could be brought about without as much of the collateral anticipated by communities. This outlook however would have to settle for the intrinsic environmental symptoms of burning carcinogenic, non-renewable fossil fuels, and satisfying the concerns of local people which itself has a political dimension to it.

To conclude, it must be recognised that fracking poses both beneficial implications and negative ones for the United Kingdom. Some communities will lose out to fracking whilst others will gain from it; and nationally speaking Britain would likely benefit from increased fuel independence, but then again the environmental effects of burning fossil fuels are detrimental to us all in the long term. Localised low scale fracking could work if sufficient appreciation were made to the impacts of fracking taking into account the concerns and potential affects to local the area and landscape, and thus generating a holistic plan. Large scale fracking would encroach on too large a geographical area which would entail more complex ramifications. If anything, it should be down to the local communities to decide whether fracking should operate in their area. Nonetheless, the government will not be able to delay the energy needs of the British people, particularly if prices rise further as a result of depletion in supplies. Should this take precedence over the concerns of fracking to communities around the country? Or should the British people reconsider their way of life which demands ever more of the environment, and that a change in culture would do better to prevent the need to bring these measures into effect?


Contributed By Bertie Bricusse

Book Review: Guns, Germs and Steel by Jared Diamond

In Guns, Germs and Steel, Jared Diamond provides a compelling thesis as to why European civilisation has geopolitically dominated the Americas, Africa and Asia, from the Age of Enlightenment to the present day. Diamond’s explanation centres on the premise that Europe has prevailed over other civilisations due to its environmental conditions, as opposed to any genetic predisposition. This is exemplified by his belief that the physical locations of different cultures have affected their ability to develop agriculture, domesticate animals and gain certain traits, such as immunity to disease. However, this is hardly a geographical breakthrough as it is evident that in different areas of the world there are varying rates of agricultural productivity. Furthermore, from the outset, Diamond drew criticism from many historians for attempting to use geography to explain the rise of mercantilism in Europe. Diamond did this by highlighting how the continent’s lack of natural impediments, such as mountain ranges and large bodies of water, had made the continent easily traversable, and thus encouraged both trade and development.
Prior to my critique, it is important that Diamond’s credentials as an author be assessed. Jared Diamond is regularly described as America’s best-known geographer; his popularity is mainly due to the publication of critically acclaimed books such as ‘Collapse: How Societies Choose to Fail or Succeed’ and ‘The Third Chimpanzee’. However, popularity does not necessarily mean credibility as an author. Diamond’s credibility is unquestionable as he sits on the boards of prestigious organisations, such as the National Academy of Sciences and the American Academy of Arts and Sciences. This book, Guns, Germs and Steel, has been regarded as Diamond’s most well received publication with him receiving awards from the Royal Society and the Phi Beta Kappa Society, as well as a Pulitzer Prize.
In the prologue, Diamond recalls a conversation that he had, in 1972, in Papua New Guinea with a local politician. The politician asked Diamond an intriguing question; “Why is it that you white people developed so much cargo and brought it to New Guinea, but we black people had little cargo of our own” (Page 14). Diamond uses this question to commence a discussion based on the history of human evolution. In particular, he seeks to explain how socio-economic and environmental conditions have affected the development of Papua New Guinea. Firstly, Diamond claims that prior to the British colonisation of Papua New Guinea nearly all New Guineans were using stone tools and relied upon hunter-gatherers for food. Diamond uses this as both a microcosm and example of how hunter-gatherer societies around the world have failed to develop into modern civilisations. He goes on to explain how the lack of sustainable agricultural systems in New Guinean hunter-gatherer societies prevented them from creating food surpluses to support and feed technological experts, bureaucrats and scribes, and therefore hindered the growth of technology, government and writing in Papua New Guinea. Moreover, Diamond correctly identifies how hunter-gatherer societies are unsustainable as their survival could be at risk if animal resources start to decline. An example of this given in the book is how most megafauna, in the New World, had become extinct by the end of the Pleistocene primarily due to overexploitation by humans. However, what Diamond surprisingly fails to acknowledge is that agriculture was independently developed in the New Guinea highlands from around 7000 BC, making it one of the few areas in the world where people independently domesticated plants. Following this, in 500 BC, a major migration of Austronesian-speaking people to the coastal regions of New Guinea, resulted in the introduction of pottery, pigs, and certain fishing techniques. Diamond’s failure to include this information may be representative of his Eurocentric views or, more likely, that he purposely ignored the fact that New Guineans had developed agriculture in 7000 BC, without the aid of Europe or Asia, as it would undoubtedly undermine his theory. In regards to socio-economic conditions, a key factor Diamond seems to overlook is that economic inequality within a country is far more prevalent than inequality amongst countries. This disregard is illustrated by Diamond’s emphasis on the present economic inequality between ’developing’ Papua New Guinea and ‘industrialised’ Australia. The reasoning behind Diamond ignoring internal economic inequality could be that his source is outdated. Diamond’s assumptions on New Guinea are based on the observations he made when he visited the country over 40 years ago in 1972. Since then, income inequality has widened, with a rich elite exploiting the countries abundance of natural resources by developing timber plantations and gold mines, whilst the remaining majority of Papua New Guineans live in extreme poverty, with about one-third of the population living on less than US$1.25 per day.
The first farming as far as we know appeared in the Middle East region, known as the Fertile Crescent, some 11,500 years ago. As highlighted in Chapter 8, the Fertile Crescent had the greatest variety of wild plants and animals, with only a small fraction being suitable for domestication. One of the most striking revelations in Diamond’s book is how the distribution of domestication-prone animals greatly favoured Eurasia. Diamond provides the convincing fact that of the 14 domesticated animals on the planet, 13 of them are found in Eurasia, one in South America and none in the rest of the world. Furthermore, most of the major food crops we consume today (e.g. wheat, barley, rice and sugar) are of Eurasian origin and of the fourteen mammals over 100 pounds that humans have domesticated, every one of the ‘major five’ (cattle, sheep, goats, pigs, and horses) is also of Eurasian origin. It must also be pointed out that one cannot argue that Eurasians were simply cleverer than Africans and Native Americans, when it came to learning how to domesticate the local flora and fauna. This is because despite Europeans eventually occupying every inhabitable continent, and advancing in technology and breeding techniques, European colonists never domesticated any new species of major agricultural importance in the lands that they conquered. Therefore, this is claimed by Diamond to be clear proof that environmental conditions (e.g. domestication of animals and plants) were the main factor in European dominance. Another important factor, that Diamond believes in, is that Eurasia’s environment is beneficial as it forms part of the ‘west-east axis’, as opposed to the ‘north-south axis’ of the Americas and Africa. The ‘west-east axis’ is based upon the principle that as Eurasia stretches from west to east, and thus its latitudinal orientation remains similar throughout the entire landmass, resulting in similar climatic conditions over which several societies could share agricultural innovations. Hence, this has allowed Eurasia to maintain an enormous, integrated area of common agricultural practices and crops, which stretches roughly 6000 miles. On the other hand, Diamond claims that, in the Americas, as there is a ‘north-south axis’ the species domesticated by the Inca civilisation in the Andes, never managed to the reach the Aztec civilisation in Central Mexico, as the retrospective animals and plants were incompatible with the tropics of Mexico. However, there are examples of north-south diffusion of crops in the Americas, most significantly the cultivation of maize in Peru, and its adoption in North America.
The transmission of diseases from European colonists to indigenous people is a key component of Diamond’s argument; this is because Diamond believes disease played a decisive role in European conquests by decimating many indigenous populations. Diamond starts his explanation by suggesting that infectious diseases, such as smallpox, measles, influenza and bubonic plague cannot sustain themselves in sparsely populated hunter-gatherer societies. This is because these infectious diseases will wipe out the entire population of a hunter-gatherer society, and therefore destroy the microbe that is causing the disease. Diamond states that in order for infectious diseases to last over a long period, they must only exist in large populations, which have close contact with other populous societies. Infectious diseases are more likely to be prevalent in these societies as the likelihood of many individuals being immune to the disease is far less, and the microbe would be able to shift back-and-forth between neighbouring populations. Diamond goes on to examine where these microbes come from and provides the plausible explanation that they are mutations of microbes that evolved to survive amidst dense populations of mammals, specifically amongst herd animals, most of which humans domesticated themselves and lived in close proximity with. Subsequently, Diamond concludes that agriculture provided the necessary conditions for the survival of these infectious diseases among humans, which through a natural mutation, made the adjustment from being hosted by domesticated animals, such as cattle and pigs, to being hosted by humans. Diamond cites this as one of the reasons for Europeans being able to subjugate Native Americans, as most Native Americans had no resistance or natural immunity to the infectious diseases that were introduced, which therefore resulted in a high Native American death rate. This strengthens Diamond’s argument as it illustrates how agriculture was responsible for the infectious diseases, which aided Europeans in their colonial conquests.
A problem consistently seen throughout the book is Diamond’s selectiveness when it comes to picking out parts of history to include in his thesis. This is evident on page 373, where in an attempt to explain why Vikings did not successfully colonise the New World, while the Spanish and other Europeans who followed them did, Diamond writes, “Spain, unlike Norway, was rich and populous enough to support exploration and subsidize colonies”. Whilst this is true, Diamond conveniently chooses to ignore the fact that Norway did successfully explore the North Atlantic, and did successfully colonise the Faeroe Islands and Iceland. The reasoning behind this omission could be that Diamond does not want to admit that Norway was able to successfully colonise and subjugate territories overseas. This is because Norway has high latitude and at the time was not as advanced in food production and technology, which therefore would have contradicted Diamond’s theory. Furthermore, Diamond fails to provide a balanced historical account as he refers to Spain as being rich and populous during the late 15th century. This is a misleading for two reasons; firstly, in the late 15th century Spain was marred by political instability as the Spanish Inquisition was taking place and secondly, the majority of Spain’s wealth came after the discovery and colonisation of the Americas. However, this seems to be the only historical inaccuracy, concerning Spain, in Guns, Germs and Steel. This is because the majority of information Diamond uses, in regards to the Spanish colonisation of the Americas, stems from the Cortes Society in New York, which is an independent organisation that publishes first-hand narratives concerning the discovery and conquest of Latin America.
In conclusion, Jared Diamond’s outtake on human history must be classified as a form of environmental determinism. The theory he puts forward, that environment not intellectuality, was the key determinant in Europe’s dominance provides a unique, insightful and refreshing outlook on human history. Diamond should be accredited for attempting to write an ambitious synthesis of history, biology, anthropology and geography. Furthermore, Guns, Germs and Steel improved my knowledge, as firstly, it provided reasons for why European countries were the first to go through the stages of development (e.g. urbanisation and industrialisation), and secondly, it highlighted the important role of agriculture in human evolution. However, the book can be easily criticised for its Eurocentrism, which is made apparent by Diamond’s loose use of the terms ‘Eurasia’ and ‘innovative’, that some believe mislead the reader into presuming that Western Europeans are responsible for the technological inventions that arose in the Middle East and Asia. Another criticism of Diamond is that he ‘cherry-picks’ what parts of history to include in his thesis, and dismisses key events that aren’t in line with his theory. This is evident by Diamond’s decision to ignore the fact that Chinese sailors traded with Africa in the 14th century, but did not to colonise the continent, as its government’s chose to reverse the policy of open exploration. This therefore brings attention to how there are other factors, such as culture, economics and form of government, aside from environmental conditions, that affect the development of societies. All of this provides basis for the argument that in Guns, Germs and Steel, Jared Diamond has oversold geography as an explanation for development of different continents. For this reason, I would not recommend Guns, Germs and Steel because whilst it claims on the front cover to be ‘a short history of everybody for the last 13,000 years’, Jared Diamond’s biased nature ensures that it only focuses on the last 500 years, as a means of inflating the period of time the world was under European domination.

REFERENCES 2010. “Guns, Germs and Steel”: Jared Diamond on Geography as Power. Available at: 1997. ‘Guns, Germs, and Steel’ by Jared Diamond | The New York Review of Books. Available at:
Swadling, P., Wagner, R. and Laba, B. 1996. Plumes from paradise. Coorparoo DC, Queensland Australia: Papua New Guinea National Museum in association with Robert Brown & Associates.
Jarosz, L. 2003. A Human Geographer’s Response to Guns, Germs, and Steel. Seattle: Blackwell Publishing. p. 7. Available through:

Contributed by Krishan Sivaneson